fast namespace
FAST namespace - All FAST code lives in this namespace.
Namespaces
- namespace SceneGraph
Classes
- class AddTransformation
- Add transformations to spatial data objects.
- class AirwaySegmentation
- Segment airways from CT using seeded region growing with explosion control.
- class AlphaBlendingVolumeRenderer
- Renders 3D images/volumes using ray-casting and alpha blending.
- class AppearanceModel
- class ApplyColormap
- Applies a colormap on an image to create a new image.
- class Attribute
- class AttributeObject
- class AttributeValue
- class AttributeValueBoolean
- class AttributeValueFloat
- class AttributeValueInteger
- class AttributeValueString
- class BadCastException
- class Batch
- Batch data object.
- class BinaryThresholding
- Segmentation using a threshold value.
- class BlockMatching
- Block matching tracking of an image stream.
- class BoundingBox
- A 2D bounding box data object.
- class BoundingBoxNetwork
- Neural network process object for bounding box detection.
- class BoundingBoxRenderer
- Renders a set of bounding boxes.
- class BoundingBoxSet
- A data object representing a (large) set of bounding boxes.
- class BoundingBoxSetAccess
- class BoundingBoxSetAccumulator
- Accumulate a stream of bounding box sets to a single large bounding box set.
- class BoundingBoxSetOpenGLAccess
- class ButtonWidget
- A button widget.
- class ButtonWidgetCallback
- Callback class for ButtonWidget Used primarily by pyFAST.
- class Camera
- class CameraAccess
- class CameraStreamer
- Stream images from a (web)camera.
- class CameraVideoSurface
- class CameraWorker
- class CardinalSplineModel
- Cardinal spline shape model.
- class CenterlineExtraction
- Extract centerline from 3D image segmentation.
- struct CenterlinePoint
- class ClariusStreamer
- Stream ultrasound images from a Clarius scanner.
- class ClassificationToText
- class CoherentPointDrift
- Abstract base class for Coherent Point Drift (CPD) registration.
- class CoherentPointDriftAffine
- Affine coherent point drift registration.
- class CoherentPointDriftRigid
- Rigid coherent point drift registration.
- class Color
- class Colormap
- Colormap data structure.
- class ColorToGrayscale
- class Compressed
- class ComputationThread
- class Concatenate
- Concatenate two images or two tensors.
- class Config
- class DataBoundingBox
- Defines the extent of a spatial data object.
- class DataChannel
- class DataHub
- Object uses to browse and download data, models and pipelines from the FAST DataHub.
- class DataHubBrowser
- A widget to browse the DataHub.
- class DataHubItemWidget
- A widget representing an item in the DataHubBrowser.
- class DataList
- A list of FAST data input/output objects Used in RunLambda.
- class DataObject
- Abstract data object class.
- class DataStream
- Object for iterating through a data stream coming from a pipeline.
- struct Destroy
- struct DetectedEdge
- struct deviceAndScore
- class DeviceCriteria
- class DeviceManager
- class DICOMFileImporter
- Read DICOM image data (both 2D and 3D).
- class Dilation
- Perform binary dilation with disk structuring element.
- class DoesNotExistException
- class DownloadProgressWidget
- A widget to display progress of downloading and item from DataHub.
- class DualViewWindow
- A Window with 2 views.
- class DualViewWindow2D
- A Window with 2 views in 2D mode.
- class DualViewWindow3D
- A Window with 2 views in 3D mode.
- class EllipseModel
- Ellipse shape model.
- class EmptyProcessObject
- class EnvelopeAndLogCompressor
- Performs normalized envelope detection and log compression on IQ data.
- class Erosion
- Perform binary erosion with disk structuring element.
- class EulerGradientVectorFlow
- Gradient vector flow using Euler method.
- class Exception
- class ExecutionDevice
- class ExistException
- class Exporter
- Abstract base class for exporters.
- class FASTApplication
- class FileExporter
- Abstract class for file exporters.
- class FileImporter
- Abstract base class for importers which import a file with a filename.
- class FileNotFoundException
- class FileStreamer
- Abstract file streamer class.
- class FlowNetwork
- A neural network for optical flow estimation.
- class GaussianSmoothing
- Smoothing by convolution with a Gaussian mask.
- class GrayscaleToColor
- class HDF5TensorExporter
- Write a Tensor to a HDF5 file.
- class HDF5TensorImporter
- Read tensor data stored in HDF5 format.
- class HeatmapRenderer
- Renders Tensor data objects as heatmaps.
- class Host
- class HounsefieldConverter
- Converts input image to Hounsefield units (if needed)
- class IGTLSocketWrapper
- class Image
- Image data.
- class ImageAccess
- class ImageAdd
- Add two images.
- class ImageCaster
- Cast image to another data type.
- class ImageChannelConverter
- Remove and/or reverse channels from an image.
- class ImageClassification
- Image classification data object.
- class ImageClassificationNetwork
- Image classification neural network.
- class ImageCropper
- Process object from cropping an image.
- class ImageExporter
- Write an Image to a file using image format such as JPG/PNG/BMP/GIF.
- class ImageFileExporter
- Write image to a file with various formats.
- class ImageFileImporter
- Read image data stored in various file formats.
- class ImageFileStreamer
- Stream a sequence of image files from disk.
- class ImageFlipper
- Flip images.
- class ImageGradient
- Calculate image gradient using central finite difference method.
- class ImageImporter
- Read JPG/PNG/BMP/TIFF images.
- class ImageInverter
- Invert the intensity of an image.
- class ImageMovingAverage
- Temporal smoothing of image using moving average.
- class ImageMultiply
- Multiply two images.
- class ImagePyramid
- Image pyramid data object.
- class ImagePyramidAccess
- class ImagePyramidLevel
- class ImagePyramidLevelExtractor
- Extract a level of an image pyramid as an image.
- class ImagePyramidPatch
- class ImagePyramidPatchExporter
- Exports an ImagePyramid to disk as a large set of image patches. Each patch is stored as a PNG image with the file name indicating its position and size. This exporter can handle both an ImagePyramid input and a stream of image patches.
- class ImagePyramidPatchImporter
- Loads an image pyramid from a set of image patches stored in a folder.
- class ImagePyramidRenderer
- Renders tiled image pyramids.
- class ImageRenderer
- Renders 2D Image data objects, both in 2D and 3D.
- class ImageResampler
- Resample an image to a given spatial resolution.
- class ImageResizer
- Process object for resizing an image.
- class ImageSharpening
- Image sharpening by the unsharp masking method.
- class ImageSlicer
- Slice a 3D image using a defined plane.
- class ImagesToSequence
- Process object for converting a stream of images to a Sequence data object.
- class ImageToBatchGenerator
- Converts a stream of images into stream of Batch data objects.
- class ImageToImageNetwork
- Image-to-Image neural network process object.
- class ImageTransposer
- Transpose images.
- class ImageWeightedMovingAverage
- Temporal smoothing of image using weighted moving average.
- class Importer
- Abstract base class for Importers.
- class InferenceDataList
- A class containing a list of data objects for inference, either Image or Tensor objects.
- struct InferenceDeviceInfo
- class InferenceEngine
- class InferenceEngineManager
- A purely static class to dynamically load inference engines at runtime.
- class IntensityClipping
- Clips the pixel intensities of an image to specific values.
- class IntensityNormalization
- Normalize intensities of an image to a 0-1 or custom range.
- class Interleave
- Interleaves input data streams into one output stream.
- class InterleavePlayback
- Interleaves input data streams into one output stream with playback control.
- class InverseGradientSegmentation
- Perform segmentation by following inverse direction of gradient vector field.
- class IsotropicResampler
- Resample an image so that the the pixel spacing is equal in both directions.
- class IterativeClosestPoint
- Registration of two meshes using ICP algorithm.
-
template<class TImage>class ITKImageExporter
- Export a FAST Image to an ITK image.
-
template<class TImage>class ITKImageImporter
- Imports and ITK image.
- class KalmanFilterModelSegmentation
- Kalman filter deformable model segmentation.
- class KeyHasher
- class KeyPressListener
- class KinectStreamer
- Streams data RGB and depth data from a kinect device.
- class LabelColorRenderer
- class LabelModifier
- Change labels in a segmentation image.
- class LaplacianOfGaussian
- Calculate image gradient using Laplacian of Gaussian method.
- class LevelSetSegmentation
- Level set image segmentation.
- class LinePlotter
- Plot lines to a graph Qt widget in real-time.
- class LineRenderer
- Renders lines stored in Mesh data objects.
- class Logger
- class LungSegmentation
- Segment the lung, airways and blood vessels from a CT using seeded region growing and morpohology.
- class ManualImageStreamer
- class MaximumIntensityProjection
- Renders 3D images using ray-casting and maximum intensity projection (MIP)
- class MeanValueCoordinatesModel
- Mean value coordinates shape model.
- class Measurement
- class Mesh
- Geometry data such as vertices, lines and triangles.
- class MeshAccess
- class MeshConnection
- class MeshFileStreamer
- Stream a sequence of Mesh stored in VTK polydata files.
- class MeshLine
- class MeshOpenCLAccess
- class MeshToSegmentation
- Converts a line (2D) or triangle (3D) mesh to a segmentation image.
- class MeshTriangle
- class MeshVertex
- class MetaImageExporter
- Export an Image to disk with the metaimage format (.mhd/.raw)
- class MetaImageImporter
- Loads an image stored in the MetaImage format (.mhd/.raw)
- class MouseListener
- class MovieStreamer
- Stream movie files.
- class MovieStreamerWorker
- class MultigridGradientVectorFlow
- Gradient vector flow using the multigrid method.
- class MultiViewWindow
- Window with multiple views.
- class NeuralNetwork
- Neural network process object.
- class NeuralNetworkNode
- A struct/class representing a neural network input/output node.
- class NewestFrameDataChannel
- class NIFTIFile
- class NIFTIImporter
- Import NIfTI image files.
- class NoMoreFramesException
- class NonLocalMeans
- Multiscale Non-Local Means (NLM) smoothing.
- class NonMaximumSuppression
- Non-maximum suppression of bounding box sets.
- class NotImplementedException
- class Object
- Base class for all FAST objects.
- class ONNXRuntimeEngine
- Microsofts ONNX Runtime inference engine with DirectX/ML support.
- class OpenCLBufferAccess
- class OpenCLDevice
- class OpenCLImageAccess
- class OpenCLProgram
- class OpenGLTextureAccess
- class OpenIGTLinkStreamer
- Stream image or transforms from an OpenIGTLink server.
- class OpenVINOEngine
- class OpenVINOInfer
- class OutOfBoundsException
- class PatchGenerator
- Generates a stream of patches from an ImagePyramid or 3D Image.
- class PatchStitcher
- Stitch a stream of processed patches from the PatchGenerator.
- class Pipeline
- A class representing a text pipeline.
- class PipelineEditor
- class PipelineHighlighter
- class PipelineSynchronizer
- Synchronize multiple process objects This PO takes in N input connections and creates N output connections. It keeps the last frame of every connection, and every time a connection has a new data frame, it send out the latest frame to all output connections.
- class PipelineWidget
- class Plane
- Class for a 3D plane.
- class PlaybackWidget
- A widget to control playback of a RandomAccessStreamer.
- class Plotter
- struct point
- class PointComparison
- class ProcessObject
- Abstract base class for all process objects.
- class ProcessObjectRegistry
- class ProcessObjectWidget
- class Progress
- A utility class for keeping track of progress and printing progress to the console.
- class QueuedDataChannel
- class RandomAccessStreamer
- Abstract class of streamer in which any frame can be accessed at any time through an integer index and playbacked can be paused.
- class RealSenseStreamer
- Streams data RGB and depth data from an Intel RealSense camera.
- struct Region
- class RegionProperties
- Calculate properties, such as area, contour and centroid, for every segmentation region.
- class Renderer
- Abstract base class for Renderers.
- class RenderToImage
- Render to an image.
- class Reporter
- class ReporterEnd
- class RidgeEdgeModel
- Ridge edge appearance model.
- class RidgeTraversalCenterlineExtraction
- Extract 3D centerline by following ridge.
- class RunLambda
- Run a C++ lambda in a FAST pipeline.
- class RuntimeMeasurement
- A class for runtime measurement.
- class RuntimeMeasurementsManager
- Manages multiple runtime measurements.
- class RunUntilFinished
- Calls run on parent PO until output is marked as last frame.
- class ScanConverter
- Scan convert beamspace image.
- class SceneGraphNode
- class SeededRegionGrowing
- Segmentation by seeded region growing.
- class SegmentationLabelRenderer
- Renders text labels on top of Segmentation data.
- class SegmentationNetwork
- Segmentation neural network process object.
- class SegmentationRenderer
- Renders 2D segmentation data.
- class SegmentationVolumeReconstructor
- Reconstruct a stream of 2D segmentation images into a 3D segmentation image.
- class Sequence
- Sequence data object.
- class SetTransformation
- Set transformations to spatial data objects.
- class Shape
- class ShapeModel
-
template<class DataType>class SimpleDataObject
- class SimpleGUI
- class SimpleWindow
- A Window with only 1 View.
- class SimpleWindow2D
- A Window with only 1 View in 2D mode.
- class SimpleWindow3D
- A Window with only 1 View in 3D mode.
- class Skeletonization
- Extract the skeleton of 2D segmentation as a 2D image.
- class SliceRenderer
- Renders a 2D image slice extracted from a 3D image.
- class SlicerWindow
- Window for showing slices of 3D data.
- class SliderWidget
- A slider widget to change a numerical parameter.
- class SliderWidgetCallback
- Callback class for SliderWidget Used primarily by pyFAST.
- class SpatialDataObject
- Abstract base class for all spatial data objects.
- class StartTimer
- class StaticDataChannel
- class StepEdgeModel
- Step edge appearance model.
- class StopTimer
- class Streamer
- Abstract base class for all Streamers.
- class StreamToFileExporter
- Write a stream of Mesh or Image data as a sequence of files.
- class SurfaceExtraction
- Extract triangle mesh from a 3D Image (volume)
- class TemplateMatching
- Match a template image to an image.
- class Tensor
- N-Dimensional tensor data object.
- class TensorAccess
- class TensorFlowEngine
- class TensorFlowTensor
- class TensorFlowTensorWrapper
- class TensorRTEngine
- class TensorShape
- Object representing the shape of a Tensor.
- class TensorToBoundingBoxSet
- Convert a tensor to a set of bounding boxes.
- class TensorToImage
- Converts a Tensor with shape HxWxC to a FAST Image.
- class TensorToSegmentation
- A process object which converts a Tensor to a Segmentation object.
- class Text
- Text data object.
- class TextRenderer
- Renders Text data.
- class ThreadStopped
- class ThresholdVolumeRenderer
- Renders 3D images using ray-casting and a threshold.
- class TIFFImagePyramidExporter
- Export an ImagePyramid to disk in the tiled pyramid TIFF format.
- class TIFFImagePyramidImporter
- Import image Pyramid stored as tiled multi-page TIFF.
- class TissueMicroArrayExtractor
- Extract tissue micro arrays (TMAs) from a whole-slide image.
- class TissueSegmentation
- Segment tissue from a WSI.
- class Tracking
- class TrackingGUI
- class TransferFunction
- A class for defining a transfer function used in volume rendering.
- class Transform
- Data object for a 3D affine transform.
- class TransformFileStreamer
- class TriangleRenderer
- Renders triangle Mesh data.
- class TubeSegmentationAndCenterlineExtraction
- Segmentation and centerline extraction of tubular structures.
- class UFFData
- class UFFReader
- class UFFStreamer
- Stream ultrasound file format (UFF) data.
- class UltrasoundImageCropper
- Automatic cropping of an ultrasound scanner image.
- class UltrasoundImageEnhancement
- Apply a color map and reject on an ultrasound image.
- class Uncompressed
- class VectorFieldColorRenderer
- Renders a vector field image using colors.
- class VectorFieldRenderer
- Renders a vector field image using lines.
- class VectorMedianFilter
- Apply median filter on vector field to reduce noise.
- class VertexBufferObjectAccess
- class VertexRenderer
- Renders vertices as a circular points.
- class VertexTensorToSegmentation
- Convert a tensor of vertex positions (graph) to a segmentation.
- class VideoSurface
- class View
- class VolumeRenderer
- Abstract base class for volume renderers.
- class VTKImageExporter
- Export a FAST Image to an VTK image.
- class VTKImageImporter
- Loads a VTK image to FAST.
- class VTKMeshExporter
- Export a FAST Mesh to an VTK PolyData object.
- class VTKMeshFileExporter
- Write Mesh to file using the VTK polydata format.
- class VTKMeshFileImporter
- Reads gemoetry mesh data from a .vtk polydata file.
- class VTKtoFAST
- class WholeSlideImageImporter
- Read a whole slide image from disk.
- class Window
- Abstract base class for windows.
- class WindowWidget
- class ZeroMeanUnitVariance
- Normalize intensities of an image to have zero mean and unit variance.
Enums
- enum class MatchingMetric { NORMALIZED_CROSS_CORRELATION, SUM_OF_SQUARED_DIFFERENCES, SUM_OF_ABSOLUTE_DIFFERENCES }
- Matching metrics for tracking.
- enum class ImageOrdering { ChannelFirst, ChannelLast }
- enum class NodeType { UNSPECIFIED, IMAGE, TENSOR }
- enum class InferenceDeviceType { ANY, CPU, GPU, VPU, OTHER }
- enum class ModelFormat { PROTOBUF, SAVEDMODEL, ONNX, OPENVINO, UFF }
- enum class BoundingBoxNetworkType { YOLOv3 }
- Type of bounding box network Used to determine how the output tensor of a bounding box network should be converted to a set of bounding boxes.
- enum AttributeType { ATTRIBUTE_TYPE_STRING, ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_TYPE_INTEGER, ATTRIBUTE_TYPE_BOOLEAN }
- enum class ImageCompression { UNSPECIFIED, RAW, JPEG, JPEG2000, LZW, NEURAL_NETWORK, DEFLATE }
- Image compression types for ImagePyramids.
- enum DataType { TYPE_FLOAT, TYPE_UINT8, TYPE_INT8, TYPE_UINT16, TYPE_INT16, TYPE_UNORM_INT16, TYPE_SNORM_INT16, TYPE_UINT32, TYPE_INT32 }
- enum PlaneType { PLANE_X, PLANE_Y, PLANE_Z }
- enum DeviceType { DEVICE_TYPE_ANY, DEVICE_TYPE_GPU, DEVICE_TYPE_CPU }
- enum DevicePlatform { DEVICE_PLATFORM_ANY, DEVICE_PLATFORM_AMD, DEVICE_PLATFORM_NVIDIA, DEVICE_PLATFORM_INTEL, DEVICE_PLATFORM_APPLE, DEVICE_PLATFORM_POCL, DEVICE_PLATFORM_UNKNOWN }
- enum DeviceCapability { DEVICE_CAPABILITY_OPENGL_INTEROP }
- enum DevicePreference { DEVICE_PREFERENCE_NONE, DEVICE_PREFERENCE_NOT_CONNECTED_TO_SCREEN, DEVICE_PREFERENCE_COMPUTE_UNITS, DEVICE_PREFERENCE_GLOBAL_MEMORY }
- enum OpenCLPlatformVendor { PLATFORM_VENDOR_APPLE, PLATFORM_VENDOR_AMD, PLATFORM_VENDOR_INTEL, PLATFORM_VENDOR_NVIDIA, PLATFORM_VENDOR_POCL, PLATFORM_VENDOR_UNKNOWN }
- enum DeviceVendor { DEVICE_VENDOR_AMD, DEVICE_VENDOR_INTEL, DEVICE_VENDOR_NVIDIA, DEVICE_VENDOR_UKNOWN }
- enum class StreamingMode { NewestFrameOnly, ProcessAllFrames, StoreAllFrames }
- Defines the streaming mode for a streamer.
- enum class PlottingStyle { BRIGHT, DARK }
- enum class WidgetPosition { BOTTOM, TOP, LEFT, RIGHT }
Typedefs
-
using DetectedEdge = struct fast::
DetectedEdge - using classifications = std::map<std::string, float>
- using Connections = std::vector<std::vector<MeshLine>>
-
using point = struct fast::
point -
using CenterlinePoint = struct fast::
CenterlinePoint -
template<int NumDimensions>using TensorData = Eigen::TensorMap<Eigen::Tensor<float, NumDimensions, Eigen::RowMajor, int>>
- using LabelColors = std::map<uint, Color>
- using VectorXui = Eigen::Matrix<uint, Eigen::Dynamic, 1>
- using Vector4ui = Eigen::Matrix<uint, 4, 1>
- using Vector3ui = Eigen::Matrix<uint, 3, 1>
- using Vector2ui = Eigen::Matrix<uint, 2, 1>
- using pixel_deleter_t = std::function<void(void*)>
-
using unique_pixel_ptr = std::unique_ptr<void, pixel_
deleter_ t> -
using deviceAndScore = struct fast::
deviceAndScore - using PlatformDevices = std::pair<cl::Platform, std::vector<cl::Device>>
- using StringMap = std::map<std::string, std::string>
- using DataMap = std::map<std::string, std::shared_ptr<DataObject>>
- using ProcessObjectMap = std::map<std::string, std::shared_ptr<ProcessObject>>
- using LabelNames = std::map<uint, std::string>
- Map from label id to label name.
Functions
- static auto grow(uchar* segmentation, std::vector<Vector3i> neighbors, std::vector<Vector3i>& voxels, short* data, float threshold, int width, int height, int depth, float previousVolume, float volumeIncreaseLimit, int volumeMinimum) -> int
-
void regionGrowing(Image::
pointer volume, Image:: pointer segmentation, const Vector3i seed) - auto linearPosition(Vector3i pos, Vector3i size) -> uint
- auto position3D(int pos, Vector3i size) -> Vector3i
- auto solveQuadratic(const std::vector<double>& G, const std::unique_ptr<double[]>& speed, Vector3i pos, Vector3i size) -> double
- void growFromPointsAdded(const std::vector<Vector3i>& points, const std::vector<double>& G, std::unordered_set<int>& Sc, std::unordered_set<int>& processed, Vector3i size)
-
auto getPeakMemoryUsage(Image::
pointer input, bool use16bit, bool writingTo3DTextures) -> uint -
auto calculateLaplacian(ImageAccess::
pointer& input, ImageAccess:: pointer& result, Vector2i position) -> Vector2f -
auto calculateLaplacian(ImageAccess::
pointer& input, ImageAccess:: pointer& result, Vector3i position) -> Vector3f -
auto calculateGVFVectorFieldResidual(Image::
pointer inputVectorField, Image:: pointer vectorField, float mu) -> double - auto calculateNewSize(Vector3ui size) -> Vector3ui
-
template<typename T>auto to_string_with_precision(const T a_value, const int n = 6) -> std::string
-
auto cornersAreAdjacent(Vector3f cornerA,
Vector3f cornerB,
Image::
pointer input) -> bool -
void getWidth(std::vector<Vector3f> intersectionPoints,
Image::
pointer input) - auto colorDistance(Vector3f e1, Vector3f e2) -> double
- auto RGB2YIQ(Vector3f rgb) -> Vector3f
- auto rearrangeMatrixToClosestPoints(const MatrixXf& A, const MatrixXf& B, const MatrixXf& Acolors, const MatrixXf& Bcolors, float colorWeight) -> MatrixXf
- auto getCentroid(const MatrixXf m) -> Vector3f
- auto sign(float value) -> float
-
auto findEdge(std::vector<float> intensityProfile,
const float intensityThreshold,
const int size,
const RidgeEdgeModel::
EdgeType edgeType) -> DetectedEdge -
auto findEdge(std::vector<float> intensityProfile,
const float intensityThreshold,
StepEdgeModel::
EdgeType type) -> DetectedEdge -
auto isInBounds(Image::
pointer image, const Vector4f& position) -> bool -
auto getValue(void* pixelPointer,
Image::
pointer image, const Vector4f& position) -> float - auto transformPosition(Vector2f position, Matrix2f RS, Vector2f T, Vector2f C) -> Vector2f
- auto getModelFileExtension(ModelFormat format) -> std::string
- auto getModelFormat(std::string filename) -> ModelFormat
- auto getModelFormatName(ModelFormat format) -> std::string
- auto print_shape(const std::vector<int64_t>& v) -> std::string
- static auto getShape(const tensorflow::NodeDef& node) -> TensorShape
- static auto getTensorShape(nvinfer1::Dims dims) -> TensorShape
- auto elementSize(nvinfer1::DataType t) -> unsigned int
- auto safeCudaMalloc(size_t memSize) -> void*
- auto shapeToDims(TensorShape shape) -> nvinfer1::Dims
- auto getPosition(int x, int nrOfClasses, int j, int size, ImageOrdering ordering) -> int
- auto getPosition(int x, int y, int nrOfClasses, int j, int width, int height) -> int
- auto sigmoid(float x) -> float
- auto getPosition(int x, int nrOfClasses, int j) -> int
-
auto getRequiredHistogramPyramidSize(Image::
pointer input) -> unsigned int -
static auto calculateMeanIntensity(ImageAccess::
pointer& access, const Vector2i start, const Vector2i size) -> float -
auto squaredMagnitude(ImageAccess::
pointer& vectorFieldAccess, Vector3i position) -> float -
auto getNormalizedValue(ImageAccess::
pointer& vectorField, Vector3i pos, uint component) -> float -
auto gradientNormalized(ImageAccess::
pointer& vectorField, Vector3i pos, int volumeComponent, int dimensions) -> Vector3f -
auto gradient(ImageAccess::
pointer& vectorField, Vector3i pos, int volumeComponent, int dimensions) -> Vector3f - void sortEigenvaluesAndVectors(Vector3f* eigenvaluesOut, Matrix3f* eigenvectorsOut)
-
auto getTubeDirection(ImageAccess::
pointer& vectorField, Vector3i pos, Vector3ui size, bool normalize) -> Vector3f -
void doEigen(ImageAccess::
pointer& vectorField, Vector3i pos, Vector3ui size, bool normalize, Vector3f* lambda, Vector3f* e1, Vector3f* e2, Vector3f* e3) - void copyToLineSet(std::stack<CenterlinePoint> points, std::vector<MeshVertex>& vertices, std::vector<MeshLine>& lines, Vector3f spacing)
-
void extractCenterlines(Image::
pointer TDF, Image:: pointer vectorField, Image:: pointer radius, int* centerlines, unordered_map<int, int>& centerlineDistances, unordered_map<int, std::stack<CenterlinePoint>>& centerlineStacks, std::vector<MeshVertex>& vertices, std::vector<MeshLine>& lines, int maxBelowTlow, bool* useFirstRadius) -
auto floodFill(ImageAccess::
pointer& access, Vector3ui size, Vector3i startPosition) -> std::vector<Vector3i> - static void pol2cart(float r, float th, float& x, float& y)
- static void copyPipelineFilesRecursivly(std::string pipelineSourcePath, std::string pipelineDestinationPath)
- auto getHomePath() -> std::string
- void downloadTestDataIfNotExists(std::string destination, bool force)
-
template<typename T>auto getScalarAsFloat(T* data, VectorXi position, Image::
pointer image, uchar channel) -> float -
template<typename T>auto getScalarAsFloat(T* data, uint position, Image::
pointer image, uchar channel) -> float -
template<typename T>void setScalarAsFloat(T* data, VectorXi position, Image::
pointer image, float value, uchar channel) -
template<typename T>void setScalarAsFloat(T* data, uint position, Image::
pointer image, float value, uchar channel) - void jpegErrorExit(j_common_ptr cinfo)
- auto operator<<(std::ostream& os, DataBoundingBox& object) -> std::ostream&
- auto getCTypeAsString(DataType type) -> std::string
-
auto getOpenCLImageFormat(OpenCLDevice::
pointer device, cl_mem_object_type imageType, DataType type, unsigned int channels) -> cl::ImageFormat - auto getSizeOfDataType(DataType type, unsigned int nrOfComponents) -> size_t
- auto getDefaultIntensityLevel(DataType type) -> float
- auto getDefaultIntensityWindow(DataType type) -> float
- void deleteArray(void* data, DataType type)
-
auto allocatePixelArray(std::size_t size,
DataType type) -> unique_
pixel_ ptr -
template<class T>auto padData(T* data, unsigned int size, unsigned int nrOfChannels) -> void*
- auto adaptDataToImage(const void*const data, cl_channel_order order, unsigned int size, DataType type, unsigned int nrOfChannels) -> const void*const
-
template<class T>auto removePadding(T* data, unsigned int size, unsigned int nrOfChannels) -> void*
-
auto adaptImageDataToHostData(unique_
pixel_ ptr data, cl_channel_order order, unsigned int size, DataType type, unsigned int nrOfChannels) -> unique_ pixel_ ptr -
template<typename T>auto pixel_deleter(void const* data) -> void -> auto
-
template<typename T>auto make_unique_pixel(T* ptr) -> unique_pixel_ptr -> auto
- auto operator==(const MeshVertex& a, const MeshVertex& b) -> bool
- auto operator!=(const TensorShape& a, const TensorShape& b) -> bool
- auto operator==(const TensorShape& a, const TensorShape& b) -> bool
- static auto getJSONFromURL(const std::string& url) -> QJsonDocument
- static auto getConsoleWidth() -> int
- static auto checkMinVersion(std::string version, std::string minVersion) -> bool
- static auto checkMaxVersion(std::string version, std::string maxVersion) -> bool
- auto createInteropContextProperties(const cl_platform_id& platform, cl_context_properties OpenGLContext, cl_context_properties display) -> cl_context_properties*
- auto compareScores(deviceAndScore a, deviceAndScore b) -> bool
- auto intToString(int number) -> std::string
- auto createInteropContextProperties(const cl::Platform& platform, cl_context_properties OpenGLContext, cl_context_properties display) -> cl_context_properties*
- auto readFile(std::string filename) -> std::string
- auto getDevice(cl::CommandQueue queue) -> cl::Device
- auto matchExtension(std::string extension, std::string extension2) -> bool
-
template<class T>auto writeToRawFile(std::string filename, T* data, unsigned int numberOfElements, bool useCompression) -> std::size_t
-
template<class T>static auto readRawData(const DiPixel* pixelData) -> void*
- static auto getDataType(const DicomImage& image) -> DataType
- static auto getDataFromImage(const DicomImage& image, DataType& type) -> void*
- static auto inserSliceFromImage(const DicomImage& image, int width, int height, int sliceNr, void* data) -> void*
-
template<class T>void read(std::unique_ptr<NIFTIFile>& file, int64_t offset, T& data)
-
template<class T>void read(std::unique_ptr<NIFTIFile>& file, T& data)
- static void terminateHandler()
- auto getProcessObjectFromRegistry(std::string name) -> std::shared_ptr<ProcessObject>
- auto getAvailablePipelines(std::string path = "") -> std::vector<Pipeline>
- static auto isStreamer(ProcessObject* po) -> bool
-
template<>auto operator<<(Reporter report, const ReporterEnd& end) -> Reporter
-
template<class T>auto operator<<(Reporter report, const T& content) -> Reporter
-
static auto createFASTImageFromMessage(igtl::ImageMessage::Pointer message,
ExecutionDevice::
pointer device) -> Image:: pointer - FAST_SIMPLE_DATA_OBJECT(String, std::string)
- static auto get_depth_scale(rs2::device dev) -> float
- static void pol2cart(float r, float th, float& x, float& y)
- auto file_info(hid_t loc_id, const char* name, const H5L_info_t* linfo, void* opdata) -> herr_t
- static auto readStringAttribute(const H5::Attribute& att) -> std::string
- auto log2(double n) -> double
- auto round(double n) -> double
- auto round(double n, int decimals) -> double
- auto allocateDataArray(unsigned int voxels, DataType type, unsigned int nrOfComponents) -> void*
-
template<class T>void getMaxAndMinFromOpenCLImageResult(void* voidData, unsigned int size, unsigned int nrOfComponents, float* min, float* max)
- auto getPowerOfTwoSize(unsigned int size) -> unsigned int
-
void getIntensitySumFromOpenCLImage(OpenCLDevice::
pointer device, cl::Image2D image, DataType type, float* sum) -
void getIntensitySumFromOpenCLImage(OpenCLDevice::
pointer device, cl::Image3D image, DataType type, float* sum) -
void getIntensityStdDevFromOpenCLImage(OpenCLDevice::
pointer device, cl::Image3D image, DataType type, float average, float* stddev) -
void getIntensityStdDevFromOpenCLImage(OpenCLDevice::
pointer device, cl::Image2D image, DataType type, float average, float* stddev) -
void getMaxAndMinFromOpenCLImage(OpenCLDevice::
pointer device, cl::Image2D image, DataType type, float* min, float* max) -
void getMaxAndMinFromOpenCLImage(OpenCLDevice::
pointer device, cl::Image3D image, DataType type, float* min, float* max) -
void getMaxAndMinFromOpenCLBuffer(OpenCLDevice::
pointer device, cl::Buffer buffer, unsigned int size, DataType type, float* min, float* max) - auto createRegion(unsigned int x, unsigned int y, unsigned int z) -> cl::size_t<3>
- auto createRegion(Vector3ui size) -> cl::size_t<3>
- auto createOrigoRegion() -> cl::size_t<3>
- auto getCLErrorString(cl_int err) -> std::string
- auto replace(std::string str, std::string find, std::string replacement) -> std::string
- auto split(const std::string input, const std::string& delimiter = " ", float removeEmpty = true) -> std::vector<std::string>
- auto loadPerspectiveMatrix(float fovy, float aspect, float zNear, float zFar) -> Matrix4f
- auto loadOrthographicMatrix(float left, float right, float bottom, float top, float zNear, float zFar) -> Matrix4f
- void createDirectory(std::string path)
- void createDirectories(std::string path)
- auto fileExists(std::string filename) -> bool
- auto isFile(const std::string& path) -> bool
- auto isDir(const std::string& path) -> bool
- auto join(std::string path) -> std::string
- static auto compare_nocase(const std::string& first, const std::string& second) -> bool
- auto getDirectoryList(std::string path, bool getFiles = true, bool getDirectories = false) -> std::vector<std::string>
- auto getDirName(std::string path) -> std::string
- auto getFileName(std::string path) -> std::string
- auto currentDateTime(std::string format = "%Y-%m-%d-%H%M%S") -> std::string
- auto getModifiedDate(std::string filename) -> std::string
- void extractZipFile(std::string zipFilepath, std::string destination)
- auto stringToLower(std::string) -> std::string
- Convert string to only upper case.
- auto stringToUpper(std::string) -> std::string
- Convert string to only lower case.
- auto fileSize(std::string filename) -> uint64_t
- Returns size in bytes of file.
- auto generateRandomString(int length) -> std::string
- Generate random alphanumeric string of a given length.
- auto roundToString(double value, int decimals = 0) -> std::string
- Round double to a certain number of decimals, then convert to string.
- auto roundToString(float value, int decimals = 0) -> std::string
- Round float to a certain number of decimals, then convert to string.
- static auto getConsoleWidth() -> int
-
template<class T>auto square(T x) -> T
-
template<typename ... Args>auto format(std::string format, Args && ... args) -> std::string
-
template<class T>auto min(T a, T b) -> T
-
template<class T>auto max(T a, T b) -> T
-
template<class T>auto sign(T value) -> T
-
template<class T>auto getSumFromOpenCLImageResult(void* voidData, unsigned int size, unsigned int nrOfComponents) -> float
-
template<class T>void getMaxAndMinFromData(void* voidData, unsigned int nrOfElements, float* min, float* max)
-
template<class T>auto getSumFromData(void* voidData, unsigned int nrOfElements) -> float
-
template<class T>auto getStandardDeviationFromData(void* voidData, unsigned int nrOfElements) -> float
- static void ltrim(std::string& s)
- static void rtrim(std::string& s)
- static void trim(std::string& s)
-
template<class T>static void hash_combine(std::size_t& seed, const T& v)
-
template<typename ... T>auto join(const std::string& path1, T... args) -> std::string
-
template<class T>auto make_uninitialized_unique(std::size_t size) -> std::unique_ptr<T>
- FAST_SIMPLE_DATA_OBJECT(FloatScalar, float)
- FAST_SIMPLE_DATA_OBJECT(FloatPoint, Vector2f)
Variables
-
fast::
Logger gLogger - std::mutex buildBinaryMutex
Enum documentation
enum class fast:: ImageOrdering
enum class fast:: NodeType
enum class fast:: InferenceDeviceType
enum class fast:: ModelFormat
Neural network modell formats
enum fast:: AttributeType
#include <FAST/Attribute.hpp>
enum fast:: DataType
#include <FAST/Data/DataTypes.hpp>
enum fast:: PlaneType
#include <FAST/Data/DataTypes.hpp>
enum fast:: DeviceType
#include <FAST/DeviceCriteria.hpp>
enum fast:: DevicePlatform
#include <FAST/DeviceCriteria.hpp>
enum fast:: DeviceCapability
#include <FAST/DeviceCriteria.hpp>
enum fast:: DevicePreference
#include <FAST/DeviceCriteria.hpp>
enum fast:: OpenCLPlatformVendor
#include <FAST/ExecutionDevice.hpp>
enum fast:: DeviceVendor
#include <FAST/ExecutionDevice.hpp>
enum class fast:: StreamingMode
#include <FAST/Streamers/Streamer.hpp>
Defines the streaming mode for a streamer.
enum class fast:: PlottingStyle
enum class fast:: WidgetPosition
#include <FAST/Visualization/Window.hpp>
Typedef documentation
typedef struct fast:: DetectedEdge fast:: DetectedEdge
typedef std::map<std::string, float> fast:: classifications
using fast:: Connections = std::vector<std::vector<MeshLine>>
typedef struct fast:: point fast:: point
#include <FAST/Data/Access/TensorAccess.hpp>
template<int NumDimensions>
using fast:: TensorData = Eigen::TensorMap<Eigen::Tensor<float, NumDimensions, Eigen::RowMajor, int>>
using fast:: LabelColors = std::map<uint, Color>
#include <FAST/Data/Color.hpp>
typedef Eigen::Matrix<uint, Eigen::Dynamic, 1> fast:: VectorXui
#include <FAST/Data/DataTypes.hpp>
typedef Eigen::Matrix<uint, 4, 1> fast:: Vector4ui
#include <FAST/Data/DataTypes.hpp>
typedef Eigen::Matrix<uint, 3, 1> fast:: Vector3ui
#include <FAST/Data/DataTypes.hpp>
typedef Eigen::Matrix<uint, 2, 1> fast:: Vector2ui
#include <FAST/Data/DataTypes.hpp>
using fast:: pixel_deleter_t = std::function<void(void*)>
#include <FAST/Data/Image.hpp>
using fast:: unique_pixel_ptr = std::unique_ptr<void, pixel_ deleter_ t>
#include <FAST/Data/Image.hpp>
typedef struct fast:: deviceAndScore fast:: deviceAndScore
#include <FAST/DeviceManager.cpp>
typedef std::pair<cl::Platform, std::vector<cl::Device>> fast:: PlatformDevices
#include <FAST/DeviceManager.hpp>
using fast:: StringMap = std::map<std::string, std::string>
#include <FAST/Pipeline.hpp>
using fast:: DataMap = std::map<std::string, std::shared_ptr<DataObject>>
#include <FAST/Pipeline.hpp>
using fast:: ProcessObjectMap = std::map<std::string, std::shared_ptr<ProcessObject>>
#include <FAST/Pipeline.hpp>
using fast:: LabelNames = std::map<uint, std::string>
Map from label id to label name.
Function documentation
void fast:: regionGrowing(Image:: pointer volume,
Image:: pointer segmentation,
const Vector3i seed)
uint fast:: linearPosition(Vector3i pos,
Vector3i size)
Vector3i fast:: position3D(int pos,
Vector3i size)
double fast:: solveQuadratic(const std::vector<double>& G,
const std::unique_ptr<double[]>& speed,
Vector3i pos,
Vector3i size)
void fast:: growFromPointsAdded(const std::vector<Vector3i>& points,
const std::vector<double>& G,
std::unordered_set<int>& Sc,
std::unordered_set<int>& processed,
Vector3i size)
uint fast:: getPeakMemoryUsage(Image:: pointer input,
bool use16bit,
bool writingTo3DTextures)
Vector2f fast:: calculateLaplacian(ImageAccess:: pointer& input,
ImageAccess:: pointer& result,
Vector2i position)
Vector3f fast:: calculateLaplacian(ImageAccess:: pointer& input,
ImageAccess:: pointer& result,
Vector3i position)
double fast:: calculateGVFVectorFieldResidual(Image:: pointer inputVectorField,
Image:: pointer vectorField,
float mu)
Calculate average error/residual for each pixel
template<typename T>
std::string fast:: to_string_with_precision(const T a_value,
const int n = 6)
bool fast:: cornersAreAdjacent(Vector3f cornerA,
Vector3f cornerB,
Image:: pointer input)
void fast:: getWidth(std::vector<Vector3f> intersectionPoints,
Image:: pointer input)
double fast:: colorDistance(Vector3f e1,
Vector3f e2)
Vector3f fast:: RGB2YIQ(Vector3f rgb)
Parameters | |
---|---|
rgb |
Convert RGB vector to YIQ color space. Y is luminance, while I and Q represent the color in a 2D space.
MatrixXf fast:: rearrangeMatrixToClosestPoints(const MatrixXf& A,
const MatrixXf& B,
const MatrixXf& Acolors,
const MatrixXf& Bcolors,
float colorWeight)
Create a new matrix which is matrix A rearranged. This matrix has the same size as B
Vector3f fast:: getCentroid(const MatrixXf m)
float fast:: sign(float value)
DetectedEdge fast:: findEdge(std::vector<float> intensityProfile,
const float intensityThreshold,
const int size,
const RidgeEdgeModel:: EdgeType edgeType)
DetectedEdge fast:: findEdge(std::vector<float> intensityProfile,
const float intensityThreshold,
StepEdgeModel:: EdgeType type)
bool fast:: isInBounds(Image:: pointer image,
const Vector4f& position)
float fast:: getValue(void* pixelPointer,
Image:: pointer image,
const Vector4f& position)
Vector2f fast:: transformPosition(Vector2f position,
Matrix2f RS,
Vector2f T,
Vector2f C)
std::string fast:: getModelFileExtension(ModelFormat format)
Get model format file extension.
ModelFormat fast:: getModelFormat(std::string filename)
Get model format of the given file.
std::string fast:: getModelFormatName(ModelFormat format)
Parameters | |
---|---|
format |
Get name of model format as string
std::string fast:: print_shape(const std::vector<int64_t>& v)
static TensorShape fast:: getShape(const tensorflow::NodeDef& node)
static TensorShape fast:: getTensorShape(nvinfer1::Dims dims)
unsigned int fast:: elementSize(nvinfer1::DataType t)
void* fast:: safeCudaMalloc(size_t memSize)
nvinfer1::Dims fast:: shapeToDims(TensorShape shape)
int fast:: getPosition(int x,
int nrOfClasses,
int j,
int size,
ImageOrdering ordering)
Parameters | |
---|---|
x | |
nrOfClasses | |
j | |
size | |
ordering |
Calculate array position based on image ordering
int fast:: getPosition(int x,
int y,
int nrOfClasses,
int j,
int width,
int height)
Parameters | |
---|---|
x | |
y | |
nrOfClasses | |
j | |
width | |
height |
Calculate array position based on image ordering
float fast:: sigmoid(float x)
int fast:: getPosition(int x,
int nrOfClasses,
int j)
Parameters | |
---|---|
x | |
nrOfClasses | |
j |
Calculate array position based on image ordering
unsigned int fast:: getRequiredHistogramPyramidSize(Image:: pointer input)
static float fast:: calculateMeanIntensity(ImageAccess:: pointer& access,
const Vector2i start,
const Vector2i size)
float fast:: squaredMagnitude(ImageAccess:: pointer& vectorFieldAccess,
Vector3i position)
float fast:: getNormalizedValue(ImageAccess:: pointer& vectorField,
Vector3i pos,
uint component)
magnitude;
Vector3f fast:: gradientNormalized(ImageAccess:: pointer& vectorField,
Vector3i pos,
int volumeComponent,
int dimensions)
Vector3f fast:: gradient(ImageAccess:: pointer& vectorField,
Vector3i pos,
int volumeComponent,
int dimensions)
void fast:: sortEigenvaluesAndVectors(Vector3f* eigenvaluesOut,
Matrix3f* eigenvectorsOut)
Vector3f fast:: getTubeDirection(ImageAccess:: pointer& vectorField,
Vector3i pos,
Vector3ui size,
bool normalize)
void fast:: doEigen(ImageAccess:: pointer& vectorField,
Vector3i pos,
Vector3ui size,
bool normalize,
Vector3f* lambda,
Vector3f* e1,
Vector3f* e2,
Vector3f* e3)
void fast:: copyToLineSet(std::stack<CenterlinePoint> points,
std::vector<MeshVertex>& vertices,
std::vector<MeshLine>& lines,
Vector3f spacing)
void fast:: extractCenterlines(Image:: pointer TDF,
Image:: pointer vectorField,
Image:: pointer radius,
int* centerlines,
unordered_map<int, int>& centerlineDistances,
unordered_map<int, std::stack<CenterlinePoint>>& centerlineStacks,
std::vector<MeshVertex>& vertices,
std::vector<MeshLine>& lines,
int maxBelowTlow,
bool* useFirstRadius)
std::vector<Vector3i> fast:: floodFill(ImageAccess:: pointer& access,
Vector3ui size,
Vector3i startPosition)
static void fast:: pol2cart(float r,
float th,
float& x,
float& y)
static void fast:: copyPipelineFilesRecursivly(std::string pipelineSourcePath,
std::string pipelineDestinationPath)
#include <FAST/Config.cpp>
std::string fast:: getHomePath()
#include <FAST/Config.cpp>
void fast:: downloadTestDataIfNotExists(std::string destination,
bool force)
#include <FAST/Config.hpp>
#include <FAST/Data/Access/ImageAccess.cpp>
template<typename T>
float fast:: getScalarAsFloat(T* data,
VectorXi position,
Image:: pointer image,
uchar channel)
#include <FAST/Data/Access/ImageAccess.cpp>
template<typename T>
float fast:: getScalarAsFloat(T* data,
uint position,
Image:: pointer image,
uchar channel)
#include <FAST/Data/Access/ImageAccess.cpp>
template<typename T>
void fast:: setScalarAsFloat(T* data,
VectorXi position,
Image:: pointer image,
float value,
uchar channel)
#include <FAST/Data/Access/ImageAccess.cpp>
template<typename T>
void fast:: setScalarAsFloat(T* data,
uint position,
Image:: pointer image,
float value,
uchar channel)
void fast:: jpegErrorExit(j_common_ptr cinfo)
std::ostream& fast:: operator<<(std::ostream& os,
DataBoundingBox& object)
#include <FAST/Data/DataBoundingBox.hpp>
std::string fast:: getCTypeAsString(DataType type)
#include <FAST/Data/DataTypes.hpp>
cl::ImageFormat fast:: getOpenCLImageFormat(OpenCLDevice:: pointer device,
cl_mem_object_type imageType,
DataType type,
unsigned int channels)
#include <FAST/Data/DataTypes.hpp>
size_t fast:: getSizeOfDataType(DataType type,
unsigned int nrOfComponents)
#include <FAST/Data/DataTypes.hpp>
float fast:: getDefaultIntensityLevel(DataType type)
#include <FAST/Data/DataTypes.hpp>
float fast:: getDefaultIntensityWindow(DataType type)
#include <FAST/Data/DataTypes.hpp>
void fast:: deleteArray(void* data,
DataType type)
#include <FAST/Data/DataTypes.hpp>
unique_ pixel_ ptr fast:: allocatePixelArray(std::size_t size,
DataType type)
#include <FAST/Data/Image.hpp>
#include <FAST/Data/Image.cpp>
template<class T>
void* fast:: padData(T* data,
unsigned int size,
unsigned int nrOfChannels)
const void*const fast:: adaptDataToImage(const void*const data,
cl_channel_order order,
unsigned int size,
DataType type,
unsigned int nrOfChannels)
#include <FAST/Data/Image.cpp>
#include <FAST/Data/Image.cpp>
template<class T>
void* fast:: removePadding(T* data,
unsigned int size,
unsigned int nrOfChannels)
unique_ pixel_ ptr fast:: adaptImageDataToHostData(unique_ pixel_ ptr data,
cl_channel_order order,
unsigned int size,
DataType type,
unsigned int nrOfChannels)
#include <FAST/Data/Image.cpp>
#include <FAST/Data/Image.hpp>
template<typename T>
auto fast:: pixel_deleter(void const* data) -> void
#include <FAST/Data/Image.hpp>
template<typename T>
auto fast:: make_unique_pixel(T* ptr) -> unique_pixel_ptr
bool fast:: operator==(const MeshVertex& a,
const MeshVertex& b)
#include <FAST/Data/Mesh.cpp>
bool fast:: operator!=(const TensorShape& a,
const TensorShape& b)
#include <FAST/Data/TensorShape.cpp>
bool fast:: operator==(const TensorShape& a,
const TensorShape& b)
#include <FAST/Data/TensorShape.cpp>
static QJsonDocument fast:: getJSONFromURL(const std::string& url)
#include <FAST/DataHub.cpp>
static int fast:: getConsoleWidth()
#include <FAST/DataHub.cpp>
static bool fast:: checkMinVersion(std::string version,
std::string minVersion)
#include <FAST/DataHub.cpp>
static bool fast:: checkMaxVersion(std::string version,
std::string maxVersion)
#include <FAST/DataHub.cpp>
cl_context_properties* fast:: createInteropContextProperties(const cl_platform_id& platform,
cl_context_properties OpenGLContext,
cl_context_properties display)
#include <FAST/DeviceManager.cpp>
bool fast:: compareScores(deviceAndScore a,
deviceAndScore b)
#include <FAST/DeviceManager.cpp>
std::string fast:: intToString(int number)
#include <FAST/Exception.hpp>
cl_context_properties* fast:: createInteropContextProperties(const cl::Platform& platform,
cl_context_properties OpenGLContext,
cl_context_properties display)
#include <FAST/ExecutionDevice.cpp>
std::string fast:: readFile(std::string filename)
#include <FAST/ExecutionDevice.cpp>
cl::Device fast:: getDevice(cl::CommandQueue queue)
#include <FAST/ExecutionDevice.cpp>
bool fast:: matchExtension(std::string extension,
std::string extension2)
template<class T>
std::size_t fast:: writeToRawFile(std::string filename,
T* data,
unsigned int numberOfElements,
bool useCompression)
template<class T>
static void* fast:: readRawData(const DiPixel* pixelData)
static DataType fast:: getDataType(const DicomImage& image)
static void* fast:: getDataFromImage(const DicomImage& image,
DataType& type)
static void* fast:: inserSliceFromImage(const DicomImage& image,
int width,
int height,
int sliceNr,
void* data)
#include <FAST/Importers/NIFTIImporter.cpp>
template<class T>
void fast:: read(std::unique_ptr<NIFTIFile>& file,
int64_t offset,
T& data)
#include <FAST/Importers/NIFTIImporter.cpp>
template<class T>
void fast:: read(std::unique_ptr<NIFTIFile>& file,
T& data)
static void fast:: terminateHandler()
#include <FAST/Object.cpp>
std::shared_ptr<ProcessObject> fast:: getProcessObjectFromRegistry(std::string name)
#include <FAST/Pipeline.cpp>
std::vector<Pipeline> fast:: getAvailablePipelines(std::string path = "")
#include <FAST/Pipeline.hpp>
Retrieve a list of all pipelines stored in .fpl files in the specified pipeline directory
static bool fast:: isStreamer(ProcessObject* po)
#include <FAST/ProcessObject.cpp>
#include <FAST/Reporter.hpp>
template<>
Reporter fast:: operator<<(Reporter report,
const ReporterEnd& end)
#include <FAST/Reporter.hpp>
template<class T>
Reporter fast:: operator<<(Reporter report,
const T& content)
static Image:: pointer fast:: createFASTImageFromMessage(igtl::ImageMessage::Pointer message,
ExecutionDevice:: pointer device)
fast:: FAST_SIMPLE_DATA_OBJECT(String,
std::string)
static float fast:: get_depth_scale(rs2::device dev)
static void fast:: pol2cart(float r,
float th,
float& x,
float& y)
#include <FAST/Streamers/UFFStreamer.cpp>
herr_t fast:: file_info(hid_t loc_id,
const char* name,
const H5L_info_t* linfo,
void* opdata)
#include <FAST/Streamers/UFFStreamer.cpp>
static std::string fast:: readStringAttribute(const H5::Attribute& att)
#include <FAST/Streamers/UFFStreamer.cpp>
double fast:: log2(double n)
#include <FAST/Utility.hpp>
double fast:: round(double n)
#include <FAST/Utility.hpp>
double fast:: round(double n,
int decimals)
#include <FAST/Utility.hpp>
void* fast:: allocateDataArray(unsigned int voxels,
DataType type,
unsigned int nrOfComponents)
#include <FAST/Utility.hpp>
#include <FAST/Utility.cpp>
template<class T>
void fast:: getMaxAndMinFromOpenCLImageResult(void* voidData,
unsigned int size,
unsigned int nrOfComponents,
float* min,
float* max)
unsigned int fast:: getPowerOfTwoSize(unsigned int size)
#include <FAST/Utility.hpp>
void fast:: getIntensitySumFromOpenCLImage(OpenCLDevice:: pointer device,
cl::Image2D image,
DataType type,
float* sum)
#include <FAST/Utility.hpp>
void fast:: getIntensitySumFromOpenCLImage(OpenCLDevice:: pointer device,
cl::Image3D image,
DataType type,
float* sum)
#include <FAST/Utility.hpp>
void fast:: getIntensityStdDevFromOpenCLImage(OpenCLDevice:: pointer device,
cl::Image3D image,
DataType type,
float average,
float* stddev)
#include <FAST/Utility.hpp>
void fast:: getIntensityStdDevFromOpenCLImage(OpenCLDevice:: pointer device,
cl::Image2D image,
DataType type,
float average,
float* stddev)
#include <FAST/Utility.hpp>
void fast:: getMaxAndMinFromOpenCLImage(OpenCLDevice:: pointer device,
cl::Image2D image,
DataType type,
float* min,
float* max)
#include <FAST/Utility.hpp>
void fast:: getMaxAndMinFromOpenCLImage(OpenCLDevice:: pointer device,
cl::Image3D image,
DataType type,
float* min,
float* max)
#include <FAST/Utility.hpp>
void fast:: getMaxAndMinFromOpenCLBuffer(OpenCLDevice:: pointer device,
cl::Buffer buffer,
unsigned int size,
DataType type,
float* min,
float* max)
#include <FAST/Utility.hpp>
cl::size_t<3> fast:: createRegion(unsigned int x,
unsigned int y,
unsigned int z)
#include <FAST/Utility.hpp>
cl::size_t<3> fast:: createRegion(Vector3ui size)
#include <FAST/Utility.hpp>
cl::size_t<3> fast:: createOrigoRegion()
#include <FAST/Utility.hpp>
std::string fast:: getCLErrorString(cl_int err)
#include <FAST/Utility.hpp>
std::string fast:: replace(std::string str,
std::string find,
std::string replacement)
#include <FAST/Utility.hpp>
std::vector<std::string> fast:: split(const std::string input,
const std::string& delimiter = " ",
float removeEmpty = true)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
input | string |
delimiter | string |
removeEmpty | |
Returns | vector of strings |
Function for splitting a string
Matrix4f fast:: loadPerspectiveMatrix(float fovy,
float aspect,
float zNear,
float zFar)
#include <FAST/Utility.hpp>
Matrix4f fast:: loadOrthographicMatrix(float left,
float right,
float bottom,
float top,
float zNear,
float zFar)
#include <FAST/Utility.hpp>
void fast:: createDirectory(std::string path)
#include <FAST/Utility.hpp>
Creates a directory at the given path. Throws exception if it fails
void fast:: createDirectories(std::string path)
#include <FAST/Utility.hpp>
Creates all directories in the given path. Throws exception if it fails
bool fast:: fileExists(std::string filename)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
filename |
Check if file exists
bool fast:: isFile(const std::string& path)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
path |
Check if path is a file.
bool fast:: isDir(const std::string& path)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
path |
Check if path is a directory.
std::string fast:: join(std::string path)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
path |
Removes trailing /
static bool fast:: compare_nocase(const std::string& first,
const std::string& second)
#include <FAST/Utility.cpp>
std::vector<std::string> fast:: getDirectoryList(std::string path,
bool getFiles = true,
bool getDirectories = false)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
path | |
getFiles | Set to true to find files in directory |
getDirectories | Set to true to find subdirectories |
Returns | list of files or subdirectories |
Returns a list of all files in a directory
std::string fast:: getDirName(std::string path)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
path |
Returns the dir name of the given path. Example: getDirName("/home/user/something/file.txt") returns home/user/something/.
std::string fast:: getFileName(std::string path)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
path |
Returns the name of a file of a path. Example: getFileName("/home/user/something.txt") returns something.txt
std::string fast:: currentDateTime(std::string format = "%Y-%m-%d-%H%M%S")
#include <FAST/Utility.hpp>
Parameters | |
---|---|
format | see http:/ |
Returns a string of the current date
std::string fast:: getModifiedDate(std::string filename)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
filename |
Get modified date of a file as a string
void fast:: extractZipFile(std::string zipFilepath,
std::string destination)
#include <FAST/Utility.hpp>
Parameters | |
---|---|
zipFilepath | path to zip file to extract |
destination | path to where to extract the conents of the zip file |
Extract the contents of a zip file to a given destination.
std::string fast:: stringToLower(std::string)
#include <FAST/Utility.hpp>
Convert string to only upper case.
Returns | upper case string |
---|
std::string fast:: stringToUpper(std::string)
#include <FAST/Utility.hpp>
Convert string to only lower case.
Returns | lower case string |
---|
uint64_t fast:: fileSize(std::string filename)
#include <FAST/Utility.hpp>
Returns size in bytes of file.
Parameters | |
---|---|
filename | |
Returns | size in bytes |
std::string fast:: generateRandomString(int length)
#include <FAST/Utility.hpp>
Generate random alphanumeric string of a given length.
Parameters | |
---|---|
length | |
Returns | random string |
std::string fast:: roundToString(double value,
int decimals = 0)
#include <FAST/Utility.hpp>
Round double to a certain number of decimals, then convert to string.
Parameters | |
---|---|
value | |
decimals | |
Returns | string |
std::string fast:: roundToString(float value,
int decimals = 0)
#include <FAST/Utility.hpp>
Round float to a certain number of decimals, then convert to string.
Parameters | |
---|---|
value | |
decimals | |
Returns | string |
static int fast:: getConsoleWidth()
#include <FAST/Utility.cpp>
#include <FAST/Utility.hpp>
template<class T>
T fast:: square(T x)
Template parameters | |
---|---|
T | |
Parameters | |
x | a numeric value |
Returns | x*x |
Does simply x^2 = x*x
#include <FAST/Utility.hpp>
template<typename ... Args>
std::string fast:: format(std::string format,
Args && ... args)
#include <FAST/Utility.hpp>
template<class T>
T fast:: min(T a,
T b)
#include <FAST/Utility.hpp>
template<class T>
T fast:: max(T a,
T b)
#include <FAST/Utility.hpp>
template<class T>
T fast:: sign(T value)
#include <FAST/Utility.hpp>
template<class T>
float fast:: getSumFromOpenCLImageResult(void* voidData,
unsigned int size,
unsigned int nrOfComponents)
#include <FAST/Utility.hpp>
template<class T>
void fast:: getMaxAndMinFromData(void* voidData,
unsigned int nrOfElements,
float* min,
float* max)
#include <FAST/Utility.hpp>
template<class T>
float fast:: getSumFromData(void* voidData,
unsigned int nrOfElements)
#include <FAST/Utility.hpp>
template<class T>
float fast:: getStandardDeviationFromData(void* voidData,
unsigned int nrOfElements)
static void fast:: ltrim(std::string& s)
#include <FAST/Utility.hpp>
static void fast:: rtrim(std::string& s)
#include <FAST/Utility.hpp>
static void fast:: trim(std::string& s)
#include <FAST/Utility.hpp>
#include <FAST/Utility.hpp>
template<class T>
static void fast:: hash_combine(std::size_t& seed,
const T& v)
#include <FAST/Utility.hpp>
template<typename ... T>
std::string fast:: join(const std::string& path1,
T... args)
Template parameters | |
---|---|
T | |
Parameters | |
path1 | |
args |
Join multiple paths.
#include <FAST/Utility.hpp>
template<class T>
std::unique_ptr<T> fast:: make_uninitialized_unique(std::size_t size)
Template parameters | |
---|---|
T | |
Parameters | |
size |
Same as make_unique(std::size_t size), except this version will not value initialize the dynamic array. This is useful for large arrays.
fast:: FAST_SIMPLE_DATA_OBJECT(FloatScalar,
float)
fast:: FAST_SIMPLE_DATA_OBJECT(FloatPoint,
Vector2f)
Variable documentation
std::mutex fast:: buildBinaryMutex
#include <FAST/ExecutionDevice.cpp>