filter_image_and_display_with_matplotlib.py source
This example show how a FAST image can be converted to a numpy ndarray and displayed using matplotlib in python.
This example show how a FAST image can be converted to a numpy ndarray and displayed using matplotlib in python.
import fast import numpy as np import matplotlib.pyplot as plt fast.downloadTestDataIfNotExists() # This will download the test data needed to run the example # Set up FAST pipeline importer = fast.ImageFileImporter.create(fast.Config.getTestDataPath() + 'US/Heart/ApicalFourChamber/US-2D_0.mhd') filter = fast.NonLocalMeans.create().connect(importer) # Execute pipeline and convert images to numpy arrays input_image = importer.runAndGetOutputData() pixel_spacing = input_image.getSpacing() input_image = np.asarray(input_image) filtered_image = np.asarray(filter.runAndGetOutputData()) # Display using matplotlib f, axes = plt.subplots(1,2) aspect = pixel_spacing[1] / pixel_spacing[0] # Compensate for anisotropic pixel spacing axes[0].imshow(input_image[..., 0], cmap='gray', aspect=aspect) axes[1].imshow(filtered_image[..., 0], cmap='gray', aspect=aspect) plt.show()